

FEASIBILITY STUDY OF A CO-DIGESTION AD FACILITY IN NEW YORK AND AN OVERVIEW OF CO-DIGESTION PERMITTING

2007 AgSTAR Conference Presented by: Brandon Moffatt - CRA Location: Sacramento, CA November 27th, 2007

New York digester

OBJECTIVES OF FEASIBILITY STUDY

- Establish a community manure management program to strengthen local livestock industry
- Generate a renewable biogas source to displace fossil fuel and reduce GHG emissions by diverting organic waste
- Generate a renewable by-product stream based on recovered solids for sale
- A Feasibility Study / Economic Modeling should always be completed for a proposed AD project to ensure viability

DESCRIPTION OF BIOMASS FEEDSTOCK SOURCES

- Six local dairy operations supply manure from
 - 3,450 cows, ~60,000 gal/day, ~83,500 ton/year
 - 13% Total Solids (TS);
 - Volatile solids (VS) 85% of TS;
 - 45% VS actually digested;
 - 0.48 m³ biogas/kg VS digested
- Biomass feedstock includes manure and organic waste sources
- Concerns over sand bedding need to be resolved

DESCRIPTION OF BIOMASS FEEDSTOCK SOURCES

OTHER ORGANIC WASTE

Organic Waste Type	Annual Waste Quantity US ton per yr	Generation Timeframe
Green Beans	9,000	June- Oct
Sauerkraut	17,500	Aug-Nov
Sweet Corn	52,500	Aug-Oct
Beets	10,000	
Carrots	3,500	
Yard Waste	112.0	April-Oct
Municipal sludge	20,180	Daily
Fat/Oil/Grease	604.1	Daily
Food	756.2	Daily

Total 132,409

A division of Conestoga-Rovers and Associates

ANAEROBIC DIGESTER CONCEPTUAL PROCESS DESIGN

- Feedstock Collection and Storage
 - Transport to AD Facility & On-site Storage
- Pre-and Post Treatment Options
 - Organics Grinding, Pasteurization, and Blending
- Anaerobic Digestion
 - Desired Moisture Content of 88 to 90%
 - Neutral pH in range of 6.8 to 7.2
 - Completely Mixed AD system
 - Thermophilic operating temperature (55 to 60°C)
 - Hydraulic retention time (HRT) of approximately 15 days

 Agricultural Services

ANAEROBIC DIGESTER CONCEPTUAL PROCESS DESIGN

- Biogas Treatment and Utilization
 - Biogas may be treated with minor gas cleanup of water vapor and H₂S and compressed to 20 psi
 - Biogas may be treated by removing H₂O, H₂S, carbon dioxide (CO₂), and siloxanes for pipeline quality (may not need to remove CO₂ but 600-900 psi)
- Disposal/reuse of process residuals
 - Digestate Dewatering and Reuse
 - Digestate must be dewatered to separate the solid and liquid fractions
 - Solids approximately 70% dry matter, with 20-40% of phosphorus contained in solid portion
 - Solids represent a revenue stream for sale as animal bedding or compost

- Model is used to determine biogas generation rate, solid and liquid streams and cost and revenue parameters
- Two scenarios:
 - Minor biogas cleaning for local use
 - Advanced biogas cleaning for pipeline grade quality
- Total biomass input represents 197,600 tons/year at 10.6 % mixed solids

- Key Model Parameters include:
 - Manure properties (moisture content, density);
 - Organic waste properties (moisture content, density);
 - Transportation unit costs (fixed costs for loading/unloading, etc.);
 - Biogas generation parameters (total solids, volatile solids in total solids, etc.);
 - Capital cost factors (scale factors, equation co-efficient, operating life);
 - Operating cost factors (staff schedule, salary, maintenance); and
 - Revenue factors (sale price for methane and digestate solids, etc.)

- Transportation Costs
 - Transportation unit costs are broken down into two components distance fixed cost (DFC)/distance variable cost (DVC)
 - Liquid manure loading/unloading costs: \$3.81/ton;
 - Solid and liquid organics loading/unloading costs: \$0.40/ton;
 - Liquid manure/organics hauling costs: \$0.18/ton/mile
- Calculations by Biomass Type
 - Inputs and intermediate biogas generation calculations evaluated independently
 - Amount of methane and biogas produced summed to estimate total production

- Plant Mass and Energy Balance
 - Combined manure and organic waste streams provide overall net input of mass and energy
 - The model identifies parameters such as:
 - Total mixed biomass quantity (197,600 wet tons per year);
 - Mixed biomass solids content (10.6%);
 - Biogas production (1,016 cfm);
 - Methane content in biogas (64%);
 - Biogas fuel heating value; and
 - Equivalent gross electrical power generation capacity (4.3 MWe)

- Capital and Operating Cost Analysis
 - Capital Costs
 - Primary inputs are volume of biomass throughput per day and volume of biogas production per day
 - Desired pre-tax return on capital is 20% annually with a plant life of 30 years
 - Using a Capital Recovery Factor (CRF) of 20% estimates payback period of 6 to 7 years at an interest rate of 7 to 10% on borrowed capital
 - Operating Costs
 - 6% of capital costs as annual maintenance cost
 - Transporting manure and feedstock to the plant and returning the digestate to the farms

3-D RENDERING OF FACILITY

REVENUE ANALYSIS

- Revenue streams identified within the model include:
 - Gas sales: \$7/MMBTU for minor biogas cleaning and \$8/MMBTU for advanced biogas cleaning
 - Tipping fees: \$8/ton for organics
 - Carbon credits: \$4/ton
 - Bedding sales or other alternate utilization (daily cover): \$25/ton
 - Subsidies: \$0

ECONOMIC SENSITIVITY ANALYSIS

- Key parameters can be varied to enable sensitivity studies of any parameter including:
 - Organic tipping fee;
 - Methane sale price;
 - Transportation and operating costs; and
 - Biogas yield
- Organic tipping fee and methane sales
 - Most significant factors in determining viability of the project
- Alternate capital sources should be considered
 - NYSERDA and other state and local grants

STUDY CONCLUSIONS

- Scenarios identified as not profitable initially, but have since worked to refine capital costs, source more profitable feedstocks, and seek out capital grants
- Preliminary nature of data → Further Evaluation
- Important areas for determining potential economic viability:
 - Co-locating the AD plant at the landfill;
 - Sharing administrative and weigh scale infrastructure;
 - Recovery of waste heat from LFG engines; and
 - Disposal of surplus liquid digestate into landfill

CO-DIGESTION

- Previous Study is an Example of Co-Digestion
 - Utilization of Non-Manure Based Organics
- Use of off-farm organics greatly improves chances of project viability by:
 - Improving biogas production;
 - Allowing for additional revenue stream (tipping fees)
- Regulation of off-farm organics varies by region with permitting requirements varying from either vague or non-existent

CO-DIGESTION – CALIFORNIA

- CA Integrated Waste Management Board (CIWMB) has jurisdiction over solid waste disposal, recycling, and composting
- CIWMB does not have a statutory or regulatory definition for AD, which is something that would help resolve jurisdictional questions for project developers (Ambiguity)
- Most dairies are now regulated through WDR Orders which are essentially state permits issued by the regional water quality boards with the exception of Santa Ana (170 dairies – general NPDES permit)
- Currently, 22 AD systems within the state utilizing some form of co-digestion

CO-DIGESTION – CALIFORNIA

- Regulatory Challenges include:
 - Water, Air, Electricity, Natural Gas, and Solid Waste Management
- Other Agencies involved:
 - CARB & 35 local air pollution control districts air emissions from mobile and stationary sources
 - Only APCD regulating AD at dairies in CA is San Joaquin Valley
 - SWRCB & 9 regional water quality boards protect and preserve water resources
 - CPUC regulates privately owned electric and natural gas companies

CO-DIGESTION – CALIFORNIA: CENTRAL VALLEY

- New Water Regulations adopted in May 2007
 - WDRs
- Approach by regulators:
 - Case by case review of individual WDRs
- What makes this an issue?

• 1,600 of 2,000 dairies are in Central Valley

CO-DIGESTION – CALIFORNIA: CENTRAL VALLEY

- CVWRB concerns:
 - Use of off-site materials will increase salt and nitrate content
 - Ability to safely store additional volumes
 - Leakage from digestate storages
- Need to evaluate possibility of developing a permitting process for complex, cross-cutting projects such as AD which involves a centralized, stream-lined permit process that eases regulatory burden and allows CA to meet GHG goals

CO-DIGESTION - WISCONSIN

- As of Winter 2006, 21 systems (8.3 MW) were operating and 23 additional systems were planned (5.4 MW) with most systems being mesophilic plug-flow systems
- DNR allows industrial wastewater to be mixed with liquid manure at a volume less than 10% of the volume of the mixture at the time it is land applied, and will provide exemptions on a case-by-case basis

CO-DIGESTION - WISCONSIN

- As of July 1st, 2007, AD systems shall be designed and constructed in accordance with Standard 313 but may required additional design requirements depending on waste stream characterization
- For anything other than manure going in, written USDA approval is required with daily records of volumes of manure and non-manure added required with additional monitoring for other materials (i.e. metals) based on waste stream characterization

CO-DIGESTION - WISCONSIN

- Green Tier applicants at the Tier 2 level (only) may request that this exemption be expanded to allow the addition of industrial liquid wastes from food products processing operations to anaerobic digesters at a volume less than 30% of the total daily input volume.
- Allowed to apply the materials in accordance with NMP or WPDES permit.

CONCLUSIONS

- A number of states have operating permits for codigestion, but require a hybrid of permits including CAFO/AFO, MSW, wastewater treatment, air emissions, and nutrient management
- Unlike, USEPA Part 503 regulations that set minimum standards for reuse of biosolids, currently, no comparable federal standards for operation of AD facilities for manure and food waste exist.

QUESTIONS/ COMMENTS

THANK YOU

